Dimerization of ABCG2 Analysed by Bimolecular Fluorescence Complementation
نویسندگان
چکیده
ABCG2 is one of three human ATP binding cassette transporters that are functionally capable of exporting a diverse range of substrates from cells. The physiological consequence of ABCG2 multidrug transport activity in leukaemia, and some solid tumours is the acquisition of cancer multidrug resistance. ABCG2 has a primary structure that infers that a minimal functional transporting unit would be a homodimer. Here we investigated the ability of a bimolecular fluorescence complementation approach to examine ABCG2 dimers, and to probe the role of individual amino acid substitutions in dimer formation. ABCG2 was tagged with fragments of venus fluorescent protein (vYFP), and this tagging did not perturb trafficking or function. Co-expression of two proteins bearing N-terminal and C-terminal fragments of YFP resulted in their association and detection of dimerization by fluorescence microscopy and flow cytometry. Point mutations in ABCG2 which may affect dimer formation were examined for alterations in the magnitude of fluorescence complementation signal. Bimolecular fluorescence complementation (BiFC) demonstrated specific ABCG2 dimer formation, but no changes in dimer formation, resulting from single amino acid substitutions, were detected by BiFC analysis.
منابع مشابه
Dimerization region of soluble guanylate cyclase characterized by bimolecular fluorescence complementation in vivo.
The ubiquitously expressed nitric oxide (NO) receptor soluble guanylate cyclase (sGC) plays a key role in signal transduction. Binding of NO to the N-terminal prosthetic heme moiety of sGC results in approximately 200-fold activation of the enzyme and an increased conversion of GTP into the second messenger cGMP. sGC exists as a heterodimer the dimerization of which is mediated mainly by the ce...
متن کاملIn vitro and in vivo mapping of the Prunus necrotic ringspot virus coat protein C-terminal dimerization domain by bimolecular fluorescence complementation.
Interactions between viral proteins are critical for virus viability. Bimolecular fluorescent complementation (BiFC) technique determines protein interactions in real-time under almost normal physiological conditions. The coat protein (CP) of Prunus necrotic ringspot virus is required for multiple functions in its replication cycle. In this study, the region involved in CP dimerization has been...
متن کاملDevelopment of a robust cell-based high-throughput screening assay to identify targets of HIV-1 viral protein R dimerization
Targeting protein-protein interactions (PPI) is an emerging field in drug discovery. Dimerization and PPI are essential properties of human immunodeficiency virus (HIV)-1 proteins, their mediated functions, and virus biology. Additionally, dimerization is required for the functional interaction of HIV-1 proteins with many host cellular components. In this study, a bimolecular fluorescence compl...
متن کاملVisualization of APP dimerization and APP-Notch2 heterodimerization in living cells using bimolecular fluorescence complementation.
We previously demonstrated that the amyloid precursor protein (APP) interacts with Notch receptors. Here, we confirmed the APP/Notch1 endogenous interaction in embryonic day 17 rat brain tissue, suggesting the interaction was not as a result of over-expression artifacts. To investigate potential homodimeric and heterodimeric interactions of APP and Notch2 (N2), we have visualized the subcellula...
متن کاملDimerization of the cytokine receptors gp130 and LIFR analysed in single cells.
The cytokine receptor gp130 is the shared signalling subunit of the IL-6-type cytokines. Interleukin-6 (IL-6) signals through gp130 homodimers whereas leukaemia inhibitory factor (LIF) exerts its action through a heterodimer of gp130 and the LIF receptor (LIFR). Related haematopoietic receptors such as the erythropoietin receptor have been described as preformed dimers in the plasma membrane. H...
متن کامل